演講者: 張志鴻 教授 (高雄大學應用數學系)

演講時間:113年12月17日下午1點30分    
演講地點:A813
講題:  Bohr chaoticity of number-conserving shifts
摘要:
Let $X$ be a compact metric space and $T: X \to X$ be a continuous transformation. A dynamical system $(X, T)$ is called Bohr chaotic if for each weight sequence $(w_n) \in \ell^{\infty}(\mathbb{N}, \mathbb{R})$ there are $f \in \mathcal{C}(X)$ and $x \in X$ such that $(w_n)$ is orthogonal to $\{f \circ T^n(x)\}$. In this talk, we introduce the number-conserving shifts and show that a number-conserving shift is either finite or Bohr chaotic. Furthermore, a number-conserving shift is consisting of periodic points whenever it is finite.
活動海報與照片: